博文

目前显示的是 七月, 2020的博文

UVA136 Ugly Numbers

图片
       我们定义丑数为只含有$2,3,5$质因子的数,例如$6=2\times3$,所以$6$是丑数,$14=2\times7$,所以$14$不为丑数。$1$也为丑数,请求出第$1500$个丑数是多少?                   我们很容易想到暴力算法,枚举每个数看它是不是丑数,然后计数即可。           #include <bits/stdc++.h> using   namespace   std;     int   n=1500,cnt=0;     int   main() {    for ( int   i=1; ;i++)   {      int   t=i;      while ((t&1) == 0)        t >>= 1;      while (t%3 == 0)       t /= 3;      while (t%5 == 0)       t /= 5;      if (t == 1)       cnt++;      if (cnt == n)     {        printf ( "The %d'th ugly number is %d.\n" ,n,i);        break ;     }   }    return   0; }        时间不够,怎么办? 直接输出结果          我们可以想到,除1以外的丑数都是通过一个丑数分别$\times2,3,5$得到,我们只要把得到的丑数放入队列,然后排序一下就好了。可排序又大大增加了时间复杂度,问题来了,怎么不通过排序保证主队列中的丑数单调递增呢?         将$1$放入主队列, 建3个队列$q_2,q_3,q...